Классическая и неоклассическая экономическая школа введение. Неоклассическая теория экономики

Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп -ОН), соединенных с углеводородным радикалом.

Классификация спиртов

По числу гидроксильных групп (атомности) спир­ты делятся на:

Одноатомные , например:

Двухатомные (гликоли), например:

Трехатомные , например:

По характеру углеводородного радикала выде­ляют следующие спирты:

Предельные , содержащие в молекуле лишь пре­дельные углеводородные радикалы, например:

Непредельные , содержащие в молекуле крат­ные (двойные и тройные) связи между атомами углерода, например:

Ароматические , т. е. спирты, содержащие в мо­лекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

Органические вещества,содержащие в молекуле гидроксильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений-фенолы.

Например:

Существуют и полиатомные (многоатомные спирты),содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит)

Номенклатура и изомерия спиртов

При образовании названий спиртов к названию углеводорода,соответствующего спирту,добавляют (родовой) суффикс-ол.

Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-,тетра- и т.д.-их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия- спирты изомерны простым эфирам:

Давайте дадим название спирту, формула которого указана ниже:

Порядок построения названия:

1. Углеродная цепь нумеруется с конца к которому ближе находится группа –ОН.
2. Основная цепь содержит 7 атомов С, значит соответствующий углеводород — гептан.
3. Число групп –ОН равно 2, префикс – «ди».
4. Гидроксильные группы находятся при 2 и 3 атомах углерода, n = 2 и 4.

Название спирта: гептандиол-2,4

Физические свойства спиртов

Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды. Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы.Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения.Так, пропан с относительной молекулярной массой 44 при обычных условиях является газом, а простейший из спиртов-метанол,имея относительную молекулярную массу 32, в обычных условиях-жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов,содержащих от 1 до 11 атомов углерода-жидкости.Высшие спирты(начиная с C 12 H 25 OH) при комнатной температуре-твердые вещества. Низшие спирты имеют алкогольный запах и жгучий вкус,они хорошо растворимы в воде.По мере увеличения углеродного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

Химические свойства спиртов

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные группы, поэтому химические свойства спиртов определяются взаимодействием друг на друга этих групп.

Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

  1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал,с одной стороны, и вещества,содержащего гидроксильную группу и не содержащего углеводородный радикал,-с другой. Такими веществами могут быть,например, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельными металлами(замещаться на них)
  2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:
    Данная реакция обратима.
  3. Межмолекулярная дегидратация спиртов- отщепление молекулы воды от двух молекул спиртов при нагревании в присутствии водоотнимающих средств:
    В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от 100 до 140°С образуется диэтиловый (серный) эфир.
  4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров(реакция этерификации)

    Реакция этерификации катализируется сильными неорганическими кислотами. Например, при взаимодействии этилового спирта и уксусной кислоты образуется-этилацетат:

  5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры,чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше 140°С в присутствии концентрированной серной кислоты:
  6. Окисление спиртов обычно проводят сильными окислителями, например, дихроматом ка­лия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидро­ксильной группой. В зависимости от природы спирта и условий проведения реакции могут обра­зовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:
    При окислении вторичных спиртов образуются кетоны:

    Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.
  7. Дегидрирование спиртов. При пропускании паров спирта при 200-300 °С над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в аль­дегиды, а вторичные - в кетоны:

  8. Качествен­ная реакция на многоатомные спирты.
    Присутствием в молекуле спирта одновремен­но нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в во­де ярко-синие комплексные соединения при взаимо­действии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

    Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты.

Получение спиртов:

Применение спиртов

Метанол (метиловый спирт СН 3 ОН) - бесцветная жидкость с характерным запахом и температурой кипения 64,7 °С. Горит чуть голубоватым пламенем. Историческое название метанола - древесный спирт объясняется одним из путей его получения способом перегонки твердых пород дерева (греч. methy - вино, опьянеть; hule - вещество, древесина).

Метанол требует осторожного обращения при работе с ним. Под действием фермента алкогольдегидрогеназы он превращает­ся в организме в формальдегид и муравьиную кислоту, которые повреждают сетчат­ку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

Этанол (этиловый спирт С 2 Н 5 ОН) - бесцветная жидкость с характерным запахом и температу­рой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют про­дукт, полученный из пищевого сырья и содержа­щий 96 % (по объему) этанола и 4 % (по объему) воды. Для получения безводного этанола - «аб­солютного спирта» этот продукт обрабатывают ве­ществами, химически связывающими воду (оксид кальция, безводный сульфат меди (II) и др.).

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноот­делимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют дена­турированным, или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекар­ственных препаратов, применяется как раствори­тель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт - важнейшее дезинфицирующее средство. Используется для при­готовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможе­ния в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увели­чивается водоотделение в клетках и, следователь­но, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение крове­носных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощу­щению теплоты.

В больших количествах этанол угнетает дея­тельность головного мозга (стадия торможения), вызывает нарушение координации движений. Про­межуточный продукт окисления этанола в организ­ме - ацетальдегид - крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спир­та и содержащих его напитков приводит к стой­кому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соедини­тельной тканью - циррозу печени.

Этандиол-1,2 (этиленгликоль) - бесцветная вязкая жидкость. Ядовит. Неограниченно раство­рим в воде. Водные растворы не кристаллизуются при температурах значительно ниже О °С, что по­зволяет применять его как компонент незамерзаю­щих охлаждающих жидкостей - антифризов для двигателей внутреннего сгорания.

Пролактриол-1,2,3 (глицерин) - вязкая сиропо­образная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной ча­сти сложных эфиров входит в состав жиров и масел.

Широко используется в косметике, фармацевтиче­ской и пищевой промышленностях. В косметических средствах глицерин играет роль смягчающего и успо­каивающего средства. Его до­бавляют к зубной пасте, чтобы предотвратить ее высыхание.

К кондитерским изделиям глицерин добавляют для пре­дотвращения их кристаллиза­ции. Им опрыскивают табак, в этом случае он действует как увлажнитель, предотвращаю­щий высыхание табачных листьев и их раскрошивание до переработки. Его добавляют к клеям, чтобы предохранить их от слишком быстрого высыхания, и к пластикам, особенно к целлофану. В последнем случае глицерин выполняет функции пластификато­ра, действуя наподобие смазки между полимерными молекулами и, таким образом, придавая пластмассам необходимую гибкость и эластичность.

Наряду с углеводородами С а Н в , в состав которых входят атомы двух видов – С и Н, известны кислородсодержащие органические соединения типа С а Н в О с . В теме 2 мы рассмотрим кислородсодержащие соединения, различающиеся:
1) числом атомов О в молекуле (один, два или более);
2) кратностью связи углерод–кислород (одинарная С–О или двойная С=О);
3) видом атомов, соединенных с кислородом (С–О–Н и С–О–С).

Урок 16.
Одноатомные предельные спирты

Спиртами называют производные углеводородов общей формулы RОН, где R – углеводородный радикал. Формула спирта получается из формулы соответствующего алкана заменой атома Н на группу ОН: RН RОН.
Вывести химическую формулу спиртов можно иначе, включая атом кислорода О между атомами
С–Н молекулы углеводорода:

RН RОН, СН 3 –Н СН 3 –О–Н.

Гидроксильная группа ОН является функциональной группой спиртов . То есть группа ОН – особенность спиртов, она обусловливает главные физические и химические свойства этих соединений.

Общая формула одноатомных предельных спиртов – С n H 2n +1OH.

Названия спиртов получают из названий углеводородов с таким же числом атомов С, как в спирте, добавлением суффикса -ол- . Например:

Название спиртов как производных соответствующих алканов характерно для соединений с линейной цепью. Положение группы ОН в них – при крайнем или при внутреннем атоме
С – указывают цифрой после названия:

Названия спиртов – производных разветвленных углеводородов – составляют обычным образом. Выбирают главную углеродную цепь, которая должна включать атом С, соединенный с группой ОН. Нумеруют атомы С главной цепи таким образом, чтобы углерод с группой ОН получил меньший номер:

Название cоставляют, начиная с цифры, указывающей положение заместителя в главной углеродной цепи: «3-метил…» Затем называют главную цепь: «3-метилбутан...» Наконец добавляют суффикс -ол- (название группы ОН) и цифрой указывают атом углерода, с которым связана группа ОН: «3-метилбутанол-2».
Если заместителей при главной цепи несколько, их перечисляют последовательно, указывая цифрой положение каждого. Повторяющиеся заместители в названии записывают с помощью приставок «ди-», «три-», «тетра-» и т.д. Например:

Изомерия спиртов. Изомеры спиртов имеют одинаковую молекулярную формулу, но разный порядок соединения атомов в молекулах.
Два вида изомерии спиртов:
1) изомерия углеродного скелета;
2) изомерия положения гидроксильной группы в молекуле.
Представим изомеры спирта С 5 Н 11 ОН этих двух видов в линейно-уголковой форме записи:

По числу атомов С, связанных со спиртовым (–С–ОН) углеродом, т.е. соседних с ним, спирты называют первичными (один сосед С), вторичными (два С) и третичными (три С-заместителя при углероде –С–ОН). Например:

Задача. Составьте по одному изомеру спиртов молекулярной формулы С 6 Н 13 ОН с главной углеродной цепью:

а) С 6 , б) С 5 , в) С 4 , г) С 3

и назовите их.

Решение

1) Записываем главные углеродные цепи с заданным числом атомов С, оставляя место для атомов Н (их укажем позже):

а) С–С–С–С–С–С; б) С–С–С–С–С; в) С–С–С–С; г) С–С–С.

2) Произвольно выбираем место присоединения группы ОН к главной цепи и при внутренних атомах С указываем углеродные заместители:

В примере г) нет возможности разместить три заместителя СН 3 – при атоме С-2 главной цепи. У спирта С 6 Н 13 ОН нет изомеров с трехуглеродной главной цепью.

3) Расставляем атомы Н при углеродах главной цепи изомеров а)–в), руководствуясь валентностью углерода С(IV), и называем соединения:

УПРАЖНЕНИЯ.

1. Подчеркните химические формулы предельных одноатомных спиртов:

СН 3 ОН, С 2 Н 5 ОН, СН 2 =СНСН 2 ОН, СНССН 2 ОН, С 3 Н 7 ОН,

СН 3 СНО, С 6 Н 5 СН 2 ОН, С 4 Н 9 ОН, С 2 Н 5 ОС 2 Н 5 , НОСН 2 СН 2 ОН.

2. Назовите следующие спирты:

3. Составьте структурные формулы по названиям спиртов: а) гексанол-3;
б) 2-метилпентанол-2; в) н-октанол; г) 1-фенилпропанол-1; д) 1-циклогексилэтанол.

4. Составьте структурные формулы изомеров спиртов общей формулы С 6 Н 13 ОН:
а) первичного; б) вторичного; в) третичного
. Назовите эти спирты.

5. По линейно-уголковым (графическим) формулам соединений запишите их структурные формулы и дайте названия веществам:

Урок 17. Получение спиртов

Низкомолекулярные спирты – метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН, а также изопропанол (СН 3) 2 СНОН – бесцветные подвижные жидкости со специфическим алкогольным запахом. Высокие температуры кипения: 64,7 °С – СН 3 ОН, 78 °С – С 2 Н 5 ОН, 97 °С – н -С 3 Н 7 ОН и 82 °С – (СН 3) 2 СНОН – обусловлены межмолекулярной водородной связью , существующей в спиртах. Спирты С (1) –С (3) смешиваются с водой (растворяются) в любых соотношениях. Эти спирты, особенно метанол и этанол, наиболее широко используются в промышленности.

1. Метанол синтезируют из водяного газа:

2. Этанол получают гидратацией этилена (присоединением воды к С 2 Н 4):

3. Другой способ получения этанола сбраживание сахаристых веществ под действием дрожжевых ферментов. Процесс спиртового брожения глюкозы (виноградного сахара) имеет вид:

4. Этанол получают из крахмала , а также из древесины (целлюлозы) путем гидролиза до глюкозы и последующего сбраживания в спирт:

5. Высшие спирты получают из галогенпроизводных углеводородов гидролизом под действием водных растворов щелочей:

Задача. Как из пропана получить пропанол-1?

Решение

Из пяти предложенных выше способов получения спиртов ни в одном не рассмотрено получение спирта из алкана (пропана и т.п.). Поэтому синтез пропанола-1 из пропана будет включать несколько стадий. По способу 2 спирты получают из алкенов, которые в свою очередь доступны при дегидрировании алканов. Схема процесса следующая:

Другая схема такого же синтеза на одну стадию длиннее, зато ее легче осуществить в лаборатории:

Присоединение воды к пропену на последней стадии протекает по правилу Марковникова и приводит к вторичному спирту – пропанолу-2. В задании требуется получить пропанол-1. Поэтому задача не решена, ищем другой способ.
Способ 5 состоит в гидролизе галогеналканов. Необходимый полупродукт для синтеза пропанола-1 – 1-хлорпропан – получают следующим образом. Хлорирование пропана дает смесь 1- и 2-монохлорпропанов:

Из этой смеси выделяют 1-хлорпропан (например, с помощью газовой хроматографии или за счет разных температур кипения: для 1-хлорпропана t кип = 47 °С, для 2-хлорпропана t кип = 36 °С). Действием на 1-хлорпропан водной щелочью КОН или NaOH синтезируют целевой пропанол-1:

Обратите внимание, что взаимодействие одних и тех же веществ: СН 3 СН 2 СН 2 Сl и КОН – в зависимости от растворителя (спирт С 2 Н 5 ОН или вода) приводит к разным продуктам – пропилену
(в спирте) или пропанолу-1 (в воде).

УПРАЖНЕНИЯ.

1. Приведите уравнения реакций промышленного синтеза метанола из водяного газа и этанола – гидратацией этилена.

2. Первичные спирты RСН 2 ОН получают гидролизом первичных алкилгалогенидов RСН 2 Наl, а вторичные спирты синтезируют гидратацией алкенов. Завершите уравнения реакций:

3. Предложите способы получения спиртов: а) бутанола-1; б) бутанола-2;
в) пентанола-3, исходя из алкенов и алкилгалогенидов.

4. При ферментативном брожении сахаров наряду с этанолом в небольшом количестве образуется смесь первичных спиртов С 3 –С 5 – сивушное масло. Главный компонент в этой смеси – изопентанол (СН 3) 2 СНСН 2 СН 2 ОН, минорные компоненты н -С 3 Н 7 ОН, (СН 3) 2 СНСН 2 ОН и СН 3 СН 2 СН(СН 3)СН 2 ОН. Назовите эти «сивушные» спирты по номенклатуре ИЮПАК. Составьте уравнение реакции брожения глюкозы С 6 Н 12 О 6 , в которой бы получались все четыре примесных спирта в мольном соотношении соответственно 2:1:1:1. Введите газ СО 2 в правую часть уравнения в количестве 1/3 моль от всех исходных атомов С, а также необходимое количество молекул Н 2 О.

5. Приведите формулы всех ароматических спиртов состава С 8 Н 10 О. (В ароматических спиртах группа ОН удалена от бензольного кольца на один или несколько атомов С:
С 6 Н 5 (СН 2)n ОН.)

Ответы на упражнения к теме 2

Урок 16

1. Подчеркнуты химические формулы предельных одноатомных спиртов:

СН 3 ОН , С 2 Н 5 ОН , СН 2 =СНСН 2 ОН, СНССН 2 ОН, С 3 Н 7 ОН ,

СН 3 СНО, С 6 Н 5 СН 2 ОН, С 4 Н 9 ОН , С 2 Н 5 ОС 2 Н 5 , НОСН 2 СН 2 ОН.

2. Названия спиртов по структурным формулам:

3. Структурные формулы по названиям спиртов:

4. Изомеры и названия спиртов общей формулы С 6 Н 13 ОН:

5. Структурные формулы и названия, составленные по графическим схемам соединений:

Спирты - органические соединения, в состав молекул которых входит одна или несколько гидроксильных групп, соединенных с углеводородным радикалом.

По числу гидроксильных групп в молекуле спирты делятся на одноатомные, двухатомные трехатомные и т. д.


Одноатомные спирты

Общая формула одноатомных спиртов - R—OH.

По типу углеводородного радикала спирты делятся на предельные, непредельные и ароматические.

Общая формула предельных одноатомных спиртов - C n N 2n +1 —OH.

Органические вещества, содержащие в молекуле гидроксильные группы, непосредственно связанные с атомами углерода бензольного кольца называются фенолами. Например, C 6 H 5 —OH - гидроксобензол (фенол).

По типу атома углерода, с которым связана гидроксильная группа, различают первичные (R—CH 2 —OH), вторичные (R—CHOH—R") и третичные (RR"R""C—OH) спирты.

C n N 2n+2 O - общая формула и предельных одноатомных спиртов, и простых эфиров.

Предельные одноатомные спирты изомерны простым эфирам - соединениям с общей формулой R—O—R".

Изомеры и гомологи

г CH 3 OH
метанол
CH 3 CH 2 OH
этанол
CH 3 OCH 3
диметиловый эфир
CH 3 CH 2 CH 2 OH
пропанол-1

пропанол-2
CH 3 OCH 2 CH 3
метилэтиловый эфир
CH 3 (CH 2) 3 OH
бутанол-1

бутанол-2

2-метил-пропанол-2

2-метил-пропанол-1
CH 3 OCH 2 CH 2 CH 3
метилпропиловый эфир
CH 3 CH 2 OCH 2 CH 3
диэтиловый эфир
и з о м е р ы

Для спиртов характерна структурная изомерия (изомерия углеродного скелета, изомерия положения заместителя или гидроксильной группы), а также межклассовая изомерия.

Алгоритм составления названий одноатомных спиртов

  1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, с одним из которых связана функциональная группа.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с того конца, к которому ближе функциональная группа.
  3. Назовите соединение по алгоритму для углеводородов.
  4. В конце названия допишите суффикс -ол и укажите номер атома углерода, с которым связана функциональная группа.

Физические свойства спиртов во многом определяются наличием между молекулами этих веществ водородных связей:

С этим же связана и хорошая растворимость в воде низших спиртов.

Простейшие спирты - жидкости с характерными запахами. С увеличением числа атомов углерода температура кипения возрастает, а растворимость в воде падает. Температура кипения у первичных спиртов больше, чем у вторичных спиртов, а у вторичных - больше, чем у третичных. Метанол крайне ядовит.

Химические свойства спиртов

Получение спиртов

Многоатомные спирты

Примерами многоатомных спиртов является двухатомный спирт этандиол (этиленгликоль) HO—CH 2 —CH 2 —OH и трехатомный спирт пропантриол-1,2,3 (глицерин) HO—CH 2 —CH(OH)—CH 2 —OH.

Это бесцветные сиропообразные жидкости, сладкие на вкус, хорошо растворимы в воде. Этиленгликоль ядовит.

Химические свойства многоатомных спиртов по большей части сходны с химическими свойствами одноатомных спиртов, но кислотные свойства из-за влияния гидроксильных групп друг на друга выражены сильнее.

Качественной реакцией на многоатомные спирты является их реакция с гидроксидом меди(II) в щелочной среде, при этом образуется ярко-синие растворы сложных по строению веществ. Например, для глицерина состав этого соединения выражается формулой Na 2 .

Фенолы

Важнейшим представителем фенолов является фенол (гидроксобензол, старые названия - гидроксибензол, оксибензол) C 6 H 5 —OH.

Физические свойства фенола: твердое бесцветное вещество с резким запахом; ядовит; при комнатной температуре заметно растворим в воде, водный раствор фенола называют карболовой кислотой.

Химические свойства

Задачи и тесты по теме "Тема 4. "Спирты. Фенолы"."

  • Спирты - Органические вещества 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

  • Классификация веществ - Классы неорганических веществ 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Кристаллические решётки - Строение вещества 8–9 класс
    Проверьте, умеете ли Вы производить расчеты по уравнениям реакций с учетом выхода продукта.

    Пример. Определите объем этилена, который можно получить при дегидратации 92 г этилового спирта, если выход продукта составляет 50 %.

    Ответ: 22,4 л

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 10 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 10 кл. М., Просвещение, 2001.
    • Г. Г. Лысова. Опорные конспекты и тесты по органической химии. М., ООО "Глик плюс", 1999.

Спирты являются очень слабыми кислотами.Их pK a = 16-18 . Однако они гораздо более сильные кислоты, чем ацетилен (рК а = 22) и аммиак (рК а =35). Поэтому легко, при комнатной температуре низшие спирты реагируют с ацетиленидами щелочных металлов и с амидом натрия :

Со щелочами спирты реагируют обратимо. Равновесие сильно смещено в сторону исходных веществ, так как вода значительно более сильная кислота, чем спирты:

В связи с этим при реакциях галогенпроизводных бензола со щелочами, проводимых в спирте, получается больше продукта I, чем II, так как

скорость реакции с метилат –ионом намного выше, чем с гидроксид-ионом, хотя последнего в равновесии больше.

Спирты могут взаимодействовать с очень многими реагентами. Ниже приведены наиболее важные из этих реакций:

Спирты реагируют с активными металлами :

Реакции, приведённые ниже, используются для абсолютирования спиртов, то есть для удаления из них воды путём её химического связывания. К магниевым стружкам приливают

Полученный этилат магния самопроизвольно реагирует с водой – обычный гидролиз соли слабого основания и слабой кислоты:

С менее активными металлами, такими как Al, Zn, Fe спирты не реагируют.

Спирты могут реагировать с концентрированными галогеноводородными кислотами в присутствии ZnCl 2 (р. Лукаса):

Эти реакции – хороший пример для иллюстрации положения теории А.М.Бутлерова о влиянии строения на химические свойства. Как видно скорость реакции с одним и тем же реагентом в случае третичных спиртов намного выше, чем для вторичных, а те в свою очередь реагируют быстрее первичных.

С кислородсодержащими кислотами спирты реагируют с образованием сложных эфиров этих кислот:

Спирты реагируют с аммиаком . Реакция обратима. Равновесие в ней смещают вправо избытком аммиака в соответствии с принципом Ле-Шателье:

Спирты реагируют с аминами .



Примежмолекулярной дегидратации спиртов образуются простые эфиры:

При дегидратировании в газовой фазе на гетерогенном катализаторе – оксиде алюминия равновесие смещают вправо, понижая давление, так как в реакции из одного моля газа получается два (в соответствии с принципом Ле-Шателье)

При внутримолекулярной дегидратации получаются алкены . В соответствии с правилом Зайцева водород преимущественно отщепляется от менее гидрогенизированного атома углерода из двух соседних с тем атомом углерода, который связан с гидроксилом

Спирты взаимодействуют с непредельными углеводородами:

При реакции спиртов с ацетиленом получаются очень важные для синтеза полимеров виниловые эфиры:

Алкадиены со спиртами так же дают непредельные простые эфиры:

С аренами спирты не реагируют . Они не реагируют также с галогенпроизводными алканов . Однако соли спиртов – алкоголяты реагируют с ними очень легко . В результате реакции получаются простые э фиры (лучший способ получения несимметричных простых эфиров):

Реакция спиртов с альдегидами (получение полуацеталей).

При реакции спиртов с полуацеталями получаются ацетали :

Полуацетали и ацетали, как правило, обладают хорошим запахом, выделяются из растений и часто служат компонентами парфюмерных композиций.

Реакция спиртов с кетонами аналогична их взаимодействию с полуацеталями, но проходит в более жестких условиях.

Спирты взаимодействуют с альдегидами и кетонами по реакции Меервейна – Понндорфа – Верлея, о которой было подробно рассказано в пункте 9 способов получения спиртов. Здесь приведём другой пример этой реакции:

Спирты взаимодействуют также и с карбоновыми кислотами . При этом обратимо получаются сложные эфиры и вода. Процесс называется реакцией этерификации .

Спирты могут взаимодействовать также со сложными эфирами . Получается новый спирт и новый сложный эфир . Реакция носит характер обратимой, катализируется кислотами и называется реакцией переэтерификации спиртом . Она очень широко применяется в синтезах душистых веществ для парфюмерных композиций.

Спирты могут окисляться в различных условиях до различных продуктов:

а) При горении :

б) При окислении паров первичных и вторичных спиртов оксидом меди получаютсясоответственноальдегиды и кетоны, например:

в) При дегидрировании спиртов на катализаторах платиновой группы первичные спирты окисляются до альдегидов , а вторичные - до кетонов :

При окислении спиртов в жидкой фазе в кислой среде сильными окислителями , такими как перманганат калия, дихромат калия или висмутат натрия первичные спирты окисляются до карбоновых кислот . Вторичные - до кетонов . Например, этанол до уксусной кислоты:

Изопропиловый спирт окисляется до кетона (до пропанона)

Окисление третичных спиртов идет

только при нагревании с разрывом C-C связи. Получается сложная смесь карбоновых кислот, кетонов и углекислый газ:

Если все алкильные радикалы одинаковы, то реакция может быть уравнена. Ниже приведена реакция окисления третичного спирта – триэтилкарбинола висмутатом натрия в среде разбавленной азотной кислоты:

Спирты растворимы в большинстве органических растворителей, первые три простейших представителя - метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН - смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R, содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5.

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана -88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и -0,5° С.

Химические свойства спиртов

Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С-О, так и О-Н - связей.

1). Реакции, протекающие по связи О-Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

2CH 3 OH + 2Na ® 2CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O ® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO-CH 2 -CH 2 -OH + 2NaOH ® NaO-CH 2 -CH 2 -ONa + 2H 2 O

Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры - соединения, содержащие фрагмент R-O-A (А - остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

1. Горение с выделением тепла:

С 2 Н 5 ОН+ 3О 2 2С 2 +3Н 2 О +а

  • 2. Взаимодействие с активными металлами:
  • 2С 2 Н 5 ОН+ Na 2С 2 Н 5 О Na +Н 2 - алкоголяты
  • 3. Взаимодействие с водородами.

Се СН 3 -Се+Н 2 О

Н 2 SO 4 - хлорметан

4. При повышении температуры в присутствии водоотчищающих веществ не предельные у.в.

С 2 Н 5 ОН t>140 0 C C 2 H 4 +H 2 O - этилен

Реакция, в которой проходит отщепление воды, называется реакцией детратации.

5. Взаимодействие друг с другом с образованием простых эфиров.

СН 3 -О - СН 3 - диметиловвый эфир

Взаимодействует с кислотами, образуют сложные эфиры.


Рис. 6.

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные - кетоны (рис.7)

Рис. 7.

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

Рис. 8.

2) Реакции, протекающие по связи С-О

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

  • а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С-О у одной из молекул разрываются, в результате образуются простые эфиры - соединения, содержащие фрагмент R-О-R (рис. 9А).
  • б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса - образование простого эфира и алкена - протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции, преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1).